
Condition and Looping

Statement

Objective

• About Statement Flow control.

• Condition Statements
– if statement

– if-else statement

– elif statement

• Looping Statements
– for loop

– while loop

• Jump Statement
– break

– continue

Statement Flow Control

• Sequence

• Selection/Condition

• Iteration / looping

Sequence

Condition

Looping

if, elif, else statement

• An if Statement tests a particular condition, only if the
condition is satisfied than the course-of-action is followed.

• An if-else Statement tests a particular condition, if the
condition is satisfied than a certain course-of-action is
followed, else another mentioned course-of-action has to be
followed.

• THE AFORE METIONED STATEMENTS CAN BE
UNDESTOOD BY THEIR GRAMATICAL USE OF if & else.

• An if-elif Statement tests a particular condition, if the
condition is satisfied than the course-of-action is followed if
not another condition is tested by elif statement.

if Statement: Syntax & Example
if <conditional expression>:

statement

if 10 > 5:

print "10 > 5"

if 5 > 10:

print "5 > 10"

*** Remote Interpreter Reinitialized ***

>>>

10 > 5

>>>

CODE:

OUTPUT:

SYNTAX:

EXAMPLE

If-else Statement: Syntax & Example
if <conditional expression>:

statement1

else:

statement2

SYNTAX:

if 5 > 6:

print “5 is greater than 6"

else:

print “6 is greater than 5”

*** Remote Interpreter Reinitialized ***

>>>

6 is greater than 5

>>>

CODE:

OUTPUT:

EXAMPLE

If-elif Statement: Syntax
if <conditional expression0>:

statement 1

elif <conditional expression1>:

statement 2

elif <conditional expression2>:

statement 3

.

.

.

.

.

.

elif <conditional expression n>:

statement n

else:

statement n+1

If-elif Statement: Example
a,b,c=1,2,5

if a==5:

print "a is 5"

elif b==5:

print "b is 5"

elif c==5:

print "c is 5"

else:

print "None of a,b,c is 5"

*** Remote Interpreter Reinitialized ***

>>>

c is 5

>>>

CODE:

OUTPUT:

‘for’ Statement:
The ‘for’ loop of python is designed to process the
items of any sequence, such as a list.

A for loop is processed as:
• A loop variable is assigned the first value in the

sequence.

• All statements in the body of for loop are executed with
assigned value of loop variable.

• The loop-variable is given a different value and again all
the above mention process takes place.

• This continues until all values in the sequence are
processed.

for Statement: Syntax & Example

for <variable> in <sequence>:

statement_to_repeat

for a in [2,4,8]:

print a*"*"

*** Remote Interpreter Reinitialized ***

>>>

**

>>>

Example

SYNTAX:

CODE:

OUTPUT:

What if the sequence used in the for
loop is too long ?

range() Function
The range() function has two sets of parameters, as

follows:
• range(stop)

stop: Number of whole numbers to generate, starting from
zero. eg. range(3) == [0, 1, 2].

• range(start, stop, step)
start: Starting number of the sequence.
stop: Generate numbers up to, but not including this number.
step: Difference between each number in the sequence.

for Statement using range() function

for a in range (0,100,20):

print a

*** Remote Interpreter Reinitialized ***

>>>

0

20

40

60

80

>>>

CODE:

OUTPUT:

while Statement:

Any while loop has the following four elements:

1. Initialization Expression initializes the loop variable.

2. Test Expression decides weather the loop-body will be
executed or not.

3. The body of loop are the statement that get repeated.

4. Update Expression changes the value of loop variable.

while Statement: Syntax & Example

a = 10

while a > 0:

print "Hello",a

a-=4

print"Loop Over"

*** Remote Interpreter Reinitialized ***

>>>

Hello 10

Hello 6

Hello 2

Loop Over

>>>

While <logical expression>:

loop-body

SYNTAX:

CODE:

OUTPUT:

Example

Jump Statement :
These statements enables program to skip over a part of program
when needed.

The break Statement

• The break statement
terminates the very loop it
lies within.

• That loop is not repeated
once the break statement is
executed.

The continue Statement

• The continue statement
only terminates one cycle of
the loop it lies within.

• The loop may start after the
continue command is
executed.

